skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Featherstone, Nicholas A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Meridional circulation regulates the Sun’s interior dynamics and magnetism. While it is well accepted that meridional flows are poleward at the Sun’s surface, helioseismic observations have yet to provide a definitive answer for the depth at which those flows return to the equator, or the number of circulation cells in depth. Here, we explore the observability of multiple circulation cells stacked in radius. Specifically, we examine the seismic signature of several meridional flow profiles by convolving time–distance averaging kernels with mean flows obtained from a suite of 3D hydrodynamic simulations. At mid and high latitudes, we find that weak flow structures in the deep convection zone can be obscured by signals from the much stronger surface flows. This contamination of 1–2 m s−1is caused by extended side lobes in the averaging kernels, which produce a spurious equatorward signal with flow speeds that are 1 order of magnitude stronger than the original flow speeds in the simulations. At low latitudes, the flows in the deep layers of the simulations are stronger (>2 m s−1) and multiple cells across the convection zone can produce a sufficiently strong signal to survive the convolution process. Now that meridional flows can be measured over two decades of data, the uncertainties arising from convective noise have fallen to a level where they are comparable in magnitude to the systematic biases caused by nonlocal features in the averaging kernels. Hence, these systematic errors are beginning to influence current helioseismic deductions and need broader consideration. 
    more » « less
  2. ABSTRACT Numerical simulations are used to investigate large-scale (mean) magnetic field generation in rotating spherical dynamos. Beyond a certain threshold, we find that the magnitude of the mean magnetic field becomes nearly independent of the system rotation rate and buoyancy forcing. The analysis suggests that this saturation arises from the Malkus-Proctor mechanism in which a Coriolis-Lorentz force balance is achieved in the zonal component of the mean momentum equation. When based on the large-scale magnetic field, the Elsasser number is near unity in the saturated regime. The results show that the large and small magnetic field saturate via distinct mechanisms in rapidly rotating dynamos, and that only the axisymmetric component of the magnetic field appears to follow an Elsasser number scaling. 
    more » « less
  3. The observational absence of giant convection cells near the Sun’s outer surface is a long-standing conundrum for solar modelers. We herein propose an explanation. Rotation strongly influences the internal dynamics, leading to suppressed convective velocities, enhanced thermal-transport efficiency, and (most significantly) relatively smaller dominant length scales. We specifically predict a characteristic convection length scale of roughly 30-Mm throughout much of the convection zone, implying weak flow amplitudes at 100- to 200-Mm giant cells scales, representative of the total envelope depth. Our reasoning is such that Coriolis forces primarily balance pressure gradients (geostrophy). Background vortex stretching balances baroclinic torques. Both together balance nonlinear advection. Turbulent fluxes convey the excess part of the solar luminosity that radiative diffusion cannot. We show that these four relations determine estimates for the dominant length scales and dynamical amplitudes strictly in terms of known physical quantities. We predict that the dynamical Rossby number for convection is less than unity below the near-surface shear layer, indicating rotational constraint. 
    more » « less
  4. Summary The large-scale dynamics of convection-driven dynamos in a spherical shell, as relevant to the geodynamo, is analyzed with numerical simulation data and asymptotic theory. An attempt is made to determine the asymptotic size (with the small parameter being the Ekman number, Ek) of the forces, and the associated velocity and magnetic fields. In agreement with previous work, the leading order mean force balance is shown to be thermal wind (Coriolis, pressure gradient, buoyancy) in the meridional plane and Coriolis-Lorentz in the zonal direction. The Lorentz force is observed to be weaker than the mean buoyancy force across a range of Ek and thermal forcing; the relative difference in these forces appears to be O(Ek1/6) within the parameter space investigated. We find that the thermal wind balance requires that the mean zonal velocity scales as O(Ek−1/3), whereas the meridional circulation is asymptotically smaller by a factor of O(Ek1/6). The mean temperature equation shows a balance between thermal diffusion and the divergence of the convective heat flux, indicating the presence of a mean temperature length scale of size O(Ek1/6). Neither the mean nor the fluctuating magnetic field show a strong dependence on the Ekman number, though the simulation data shows evidence of a mean magnetic field length scale of size O(Ek1/6). A consequence of the asymptotic ordering of the forces is that Taylor’s constraint is satisfied to accuracy O(Ek1/6), despite the absence of a leading-order magnetostrophic balance. Further consequences of the force balance are discussed with respect to the large-scale flows thought to be important for the geodynamo. 
    more » « less